30 research outputs found

    Environmental Monitoring: Acoustic Wireless Sensors for Pest Detection

    Get PDF
    Presented at a Showcase of Research at the School of Engineering

    A review of current neuromorphic approaches for vision, auditory, and olfactory sensors

    Get PDF
    Conventional vision, auditory, and olfactory sensors generate large volumes of redundant data and as a result tend to consume excessive power. To address these shortcomings, neuromorphic sensors have been developed. These sensors mimic the neuro-biological architecture of sensory organs using aVLSI (analog Very Large Scale Integration) and generate asynchronous spiking output that represents sensing information in ways that are similar to neural signals. This allows for much lower power consumption due to an ability to extract useful sensory information from sparse captured data. The foundation for research in neuromorphic sensors was laid more than two decades ago, but recent developments in understanding of biological sensing and advanced electronics, have stimulated research on sophisticated neuromorphic sensors that provide numerous advantages over conventional sensors. In this paper, we review the current state-of-the-art in neuromorphic implementation of vision, auditory, and olfactory sensors and identify key contributions across these fields. Bringing together these key contributions we suggest a future research direction for further development of the neuromorphic sensing field

    An investigation into spike-based neuromorphic approaches for artificial olfactory systems

    Get PDF
    The implementation of neuromorphic methods has delivered promising results for vision and auditory sensors. These methods focus on mimicking the neuro-biological architecture to generate and process spike-based information with minimal power consumption. With increasing interest in developing low-power and robust chemical sensors, the application of neuromorphic engineering concepts for electronic noses has provided an impetus for research focusing on improving these instruments. While conventional e-noses apply computationally expensive and power-consuming data-processing strategies, neuromorphic olfactory sensors implement the biological olfaction principles found in humans and insects to simplify the handling of multivariate sensory data by generating and processing spike-based information. Over the last decade, research on neuromorphic olfaction has established the capability of these sensors to tackle problems that plague the current e-nose implementations such as drift, response time, portability, power consumption and size. This article brings together the key contributions in neuromorphic olfaction and identifies future research directions to develop near-real-time olfactory sensors that can be implemented for a range of applications such as biosecurity and environmental monitoring. Furthermore, we aim to expose the computational parallels between neuromorphic olfaction and gustation for future research focusing on the correlation of these senses

    A Novel MicroPhotonic Structure for Optical Header Recognition

    Get PDF
    In this paper, we propose and demonstrate a new MicroPhotonic structure for optical packet header recognition based on the integration of an optical cavity, optical components and a photoreceiver array. The structure is inherently immune to optical interference thereby routing an optical header within optical cavities to different photo receiver elements to generate the autocorrelation function, and hence the recognition of the header using simple microelectronic circuits. The proof-of-concept of the proposed MicroPhotonic optical header recognition structure is analysed and experimentally demonstrated, and results show excellent agreement between measurements and theory

    Application of a Brain-Inspired Spiking Neural Network Architecture to Odor Data Classification

    Get PDF
    Existing methods in neuromorphic olfaction mainly focus on implementing the data transformation based on the neurobiological architecture of the olfactory pathway. While the transformation is pivotal for the sparse spike-based representation of odor data, classification techniques based on the bio-computations of the higher brain areas, which process the spiking data for identification of odor, remain largely unexplored. This paper argues that brain-inspired spiking neural networks constitute a promising approach for the next generation of machine intelligence for odor data processing. Inspired by principles of brain information processing, here we propose the first spiking neural network method and associated deep machine learning system for classification of odor data. The paper demonstrates that the proposed approach has several advantages when compared to the current state-of-the-art methods. Based on results obtained using a benchmark dataset, the model achieved a high classification accuracy for a large number of odors and has the capacity for incremental learning on new data. The paper explores different spike encoding algorithms and finds that the most suitable for the task is the step-wise encoding function. Further directions in the brain-inspired study of odor machine classification include investigation of more biologically plausible algorithms for mapping, learning, and interpretation of odor data along with the realization of these algorithms on some highly parallel and low power consuming neuromorphic hardware devices for real-world applications

    Bowel sounds identification and migrating motor complex detection with low-cost piezoelectric acoustic sensing device

    Get PDF
    Interpretation of bowel sounds (BS) provides a convenient and non-invasive technique to aid in the diagnosis of gastrointestinal (GI) conditions. However, the approach’s potential is limited by variation between BS and their irregular occurrence. A short, manual auscultation is sufficient to aid in diagnosis of only a few conditions. A longer recording has the potential to unlock additional understanding of GI physiology and clinical utility. In this paper, a low-cost and straightforward piezoelectric acoustic sensing device was designed and used for long BS recordings. The migrating motor complex (MMC) cycle was detected using this device and the sound index as the biomarker for MMC phases. This cycle of recurring motility is typically measured using expensive and invasive equipment. We also used our recordings to develop an improved categorization system for BS. Five different types of BS were extracted: the single burst, multiple bursts, continuous random sound, harmonic sound, and their combination. Their acoustic characteristics and distribution are described. The quantities of different BS during two-hour recordings varied considerably from person to person, while the proportions of different types were consistent. The sensing devices provide a useful tool for MMC detection and study of GI physiology and function

    Real-time classification of multivariate olfaction data using spiking neural networks

    Get PDF
    Recent studies in bioinspired artificial olfaction, especially those detailing the application of spike-based neuromorphic methods, have led to promising developments towards overcoming the limitations of traditional approaches, such as complexity in handling multivariate data, computational and power requirements, poor accuracy, and substantial delay for processing and classification of odors. Rank-order-based olfactory systems provide an interesting approach for detection of target gases by encoding multi-variate data generated by artificial olfactory systems into temporal signatures. However, the utilization of traditional pattern-matching methods and unpredictable shuffling of spikes in the rank-order impedes the performance of the system. In this paper, we present an SNN-based solution for the classification of rank-order spiking patterns to provide continuous recognition results in real-time. The SNN classifier is deployed on a neuromorphic hardware system that enables massively parallel and low-power processing on incoming rank-order patterns. Offline learning is used to store the reference rank-order patterns, and an inbuilt nearest neighbor classification logic is applied by the neurons to provide recognition results. The proposed system was evaluated using two different datasets including rank-order spiking data from previously established olfactory systems. The continuous classification that was achieved required a maximum of 12.82% of the total pattern frame to provide 96.5% accuracy in identifying corresponding target gases. Recognition results were obtained at a nominal processing latency of 16ms for each incoming spike. In addition to the clear advantages in terms of real-time operation and robustness to inconsistent rank-orders, the SNN classifier can also detect anomalies in rank-order patterns arising due to drift in sensing arrays

    Catastrophic and Parametric Fault Modelling for Photonic Systems

    Get PDF
    In this paper we investigate the impact of the most common catastrophic and parametric faults in photonic systems. We demonstrate, using the example of a photonic correlator, the effectiveness of testing techniques for fault detection in photonic systems. To the best of our knowledge, this constitutes the first attempt to define a fault model and to develop a test methodology for photonic systems
    corecore